Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Pharmaceutical Analysis ; (6): 143-155, 2019.
Artigo em Chinês | WPRIM | ID: wpr-753357

RESUMO

The development of biotechnology-based active pharmaceutical ingredients, such as GLP-1 analogs, brought changes in type 2 diabetes treatment options. For better therapeutic efficiency, these active pharmaceutical ingredients require appropriate administration, without the development of adverse effects or toxicity. Therefore, it is required to develop several quantification methods for GLP-1 analogs products, in order to achieve the therapeutic goals, among which ELISA and HPLC arise. These methods are developed, optimized and validated in order to determine GLP-1 analogs, not only in final formu-lation of the active pharmaceutical ingredient, but also during preclinical and clinical trials assessment. This review highlights the role of ELISA and HPLC methods that have been used during the assessment for GLP-1 analogs, especially for exenatide.

2.
Artigo em Inglês | IMSEAR | ID: sea-163515

RESUMO

Aims: Develop an anti-tuberculosis (TB) Fixed Dose Combination (FDC) tablet containing an immediate release layer (IRL) composed of both rifampicin (RIF) and pyrazinamide (PYR) and a retarded release layer (RRL) comprised of isoniazid (INH) which would allow segregated delivery of RIF and INH. Study Design: Trials were conducted on the pre-formulations and formulations to assess the compatibility of excipients and obtain a modified release profile, for an IRL consisting of both RIF and PYR and a RRL containing INH. Place and Duration of Study: This study was performed at the Laboratory of Pharmaceutical Industrial Technology, Drug and Pharmaceutical Department, Faculty of Pharmacy, between March 2008 and April 2010. Methodology: Preformulation studies were performed on RIF and PYR, alone and in combination with excipients. The pharmacopeic attributes of the distinct layers and the FDC tablets were evaluated for hardness, friability and disintegration time. The FDC bilayer tablets were analyzed for their drug content and cumulative dissolution of the drug. Results: Fourier transform infrared, x-ray diffraction and differential scanning calorimetry results revealed the presence of amorphous and crystalline RIF forms and no potentially relevant incompatibilities were identified in the kneaded system containing RIF, PYR and excipients. In vitro drug release from the FDC tablets revealed that the intragranular addition of croscarmellose sodium into the IRL rendered a cumulative dissolution of RIF and PYR within the limits of simulated gastric fluid. And, for RRL, the most effective retardant matrix excipient was found to be hydroxypropyl methylcellulose. Conclusion: Segregated delivery of RIF and INH from bilayer tablets is an option for the development of immediate release FDC tablets and the retarded release of INH, this strategy proved suitable for preventing contact of these two drugs under acidic conditions. This finding suggested that RIF had a high in vivo bioavailability which qualifies this FDC for future bioavailability studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA